[UdemyCourseDownloader] Complete Data Science & Machine Learning Bootcamp – Python 3
UdemyCourseDownloader Complete Data Science Machine Learning Bootcamp Python 3
File Size: 14.16 GB
Creat Time: 2025-03-30 06:08:29
Last Active: 2025-03-30 06:08:29
Active Degree: 1
Magnet Link:
Magnet Link
Statement: This site does not provide download links, only text displays, and does not contain any infringement.
File List:
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/8. [Python] - Advanced Functions and the Pitfalls of Optimisation (Part 1).mp4 291.34 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/6. [Python] - Loops and the Gradient Descent Algorithm.mp4 287.45 MB
- 10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/12. Model Evaluation and the Confusion Matrix.mp4 251.84 MB
- 05. Predict House Prices with Multivariable Linear Regression/32. Build a Valuation Tool (Part 3) Docstrings & Creating your own Python Module.mp4 244.16 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/10. Understanding the Learning Rate.mp4 236.59 MB
- 03. Python Programming for Data Science and Machine Learning/10. [Python] - Module Imports.mp4 232.08 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/9. [Python] - Tuples and the Pitfalls of Optimisation (Part 2).mp4 219.02 MB
- 05. Predict House Prices with Multivariable Linear Regression/14. Working with Seaborn Pairplots & Jupyter Microbenchmarking Techniques.mp4 214.40 MB
- 11. Use Tensorflow to Classify Handwritten Digits/12. Different Model Architectures Experimenting with Dropout.mp4 213.68 MB
- 08. Test and Evaluate a Naive Bayes Classifier Part 3/6. Visualising the Decision Boundary.mp4 205.31 MB
- 08. Test and Evaluate a Naive Bayes Classifier Part 3/11. A Naive Bayes Implementation using SciKit Learn.mp4 195.10 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/11. How to Create 3-Dimensional Charts.mp4 193.48 MB
- 10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/9. Use Regularisation to Prevent Overfitting Early Stopping & Dropout Techniques.mp4 191.53 MB
- 03. Python Programming for Data Science and Machine Learning/18. How to Make Sense of Python Documentation for Data Visualisation.mp4 171.46 MB
- 05. Predict House Prices with Multivariable Linear Regression/11. Visualising Correlations with a Heatmap.mp4 168.65 MB
- 03. Python Programming for Data Science and Machine Learning/17. [Python] - Objects - Understanding Attributes and Methods.mp4 156.77 MB
- 11. Use Tensorflow to Classify Handwritten Digits/11. Name Scoping and Image Visualisation in Tensorboard.mp4 155.37 MB
- 03. Python Programming for Data Science and Machine Learning/9. [Python & Pandas] - Dataframes and Series.mp4 153.21 MB
- 05. Predict House Prices with Multivariable Linear Regression/26. Residual Analysis (Part 2) Graphing and Comparing Regression Residuals.mp4 153.02 MB
- 05. Predict House Prices with Multivariable Linear Regression/27. Making Predictions (Part 1) MSE & R-Squared.mp4 152.68 MB
- 11. Use Tensorflow to Classify Handwritten Digits/6. Creating Tensors and Setting up the Neural Network Architecture.mp4 150.86 MB
- 05. Predict House Prices with Multivariable Linear Regression/23. Model Simiplication & Baysian Information Criterion.mp4 150.15 MB
- 02. Predict Movie Box Office Revenue with Linear Regression/3. Explore & Visualise the Data with Python.mp4 148.16 MB
- 09. Introduction to Neural Networks and How to Use Pre-Trained Models/2. Layers, Feature Generation and Learning.mp4 146.70 MB
- 05. Predict House Prices with Multivariable Linear Regression/22. Understanding VIF & Testing for Multicollinearity.mp4 143.83 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/6. Joint & Conditional Probability.mp4 141.82 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/15. Reshaping and Slicing N-Dimensional Arrays.mp4 140.82 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/35. Sparse Matrix (Part 2) Data Munging with Nested Loops.mp4 137.23 MB
- 05. Predict House Prices with Multivariable Linear Regression/4. Clean and Explore the Data (Part 2) Find Missing Values.mp4 135.03 MB
- 09. Introduction to Neural Networks and How to Use Pre-Trained Models/6. Making Predictions using InceptionResNet.mp4 134.58 MB
- 05. Predict House Prices with Multivariable Linear Regression/30. [Python] - Conditional Statements - Build a Valuation Tool (Part 2).mp4 134.39 MB
- 10. Build an Artificial Neural Network to Recognise Images using Keras & Tensorflow/7. Interacting with the Operating System and the Python Try-Catch Block.mp4 133.41 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/11. [Python] - Generator Functions & the yield Keyword.mp4 133.16 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/12. Understanding Partial Derivatives and How to use SymPy.mp4 132.82 MB
- 07. Train a Naive Bayes Classifier to Create a Spam Filter Part 2/2. Create a Full Matrix.mp4 132.24 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/28. Styling the Word Cloud with a Mask.mp4 131.37 MB
- 05. Predict House Prices with Multivariable Linear Regression/29. Build a Valuation Tool (Part 1) Working with Pandas Series & Numpy ndarrays.mp4 131.31 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/14. [Python] - Loops and Performance Considerations.mp4 131.08 MB
- 05. Predict House Prices with Multivariable Linear Regression/12. Techniques to Style Scatter Plots.mp4 128.53 MB
- 11. Use Tensorflow to Classify Handwritten Digits/9. Tensorboard Summaries and the Filewriter.mp4 128.29 MB
- 03. Python Programming for Data Science and Machine Learning/13. [Python] - Functions - Part 2 Arguments & Parameters.mp4 128.20 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/30. Styling Word Clouds with Custom Fonts.mp4 127.30 MB
- 05. Predict House Prices with Multivariable Linear Regression/20. Improving the Model by Transforming the Data.mp4 126.87 MB
- 04. Introduction to Optimisation and the Gradient Descent Algorithm/21. Plotting the Mean Squared Error (MSE) on a Surface (Part 2).mp4 124.88 MB
- 05. Predict House Prices with Multivariable Linear Regression/25. Residual Analysis (Part 1) Predicted vs Actual Values.mp4 124.42 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/13. Cleaning Data (Part 1) Check for Empty Emails & Null Entries.mp4 121.93 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/19. Tokenizing, Removing Stop Words and the Python Set Data Structure.mp4 117.76 MB
- 11. Use Tensorflow to Classify Handwritten Digits/10. Understanding the Tensorflow Graph Nodes and Edges.mp4 115.74 MB
- 06. Pre-Process Text Data for a Naive Bayes Classifier to Filter Spam Emails Part 1/2. Gathering Email Data and Working with Archives & Text Editors.mp4 112.05 MB
- 05. Predict House Prices with Multivariable Linear Regression/10. Calculating Correlations and the Problem posed by Multicollinearity.mp4 111.44 MB
牙狼2005
Myfans ミル (_072q) & Kuzu 联动 和好朋友看完电影后~回家可以做些什么呢
搭乗日誌 スチュワーデスの危ない報告?有点子熟悉啊
康先生土豪
Dream Models Camille
内蒙古大奶叫声骚
偉士達廚具溝通
Preteen mega
赤峰大奶
rpg 汉化
Desktop computer pc core i9 14650hx price
PZ Studio
PZ Studio Magazine
肥牛卷
GUN-774
Emily bloom】
父亲一个月记录和女儿的性爱历程
荷兰红灯区内游玩
crazyf411 forward direction
淫妻爱好者甄选
内蒙赤峰
フェンダージャパン jvシリアル
성경음원
内蒙巨乳
cherish ams model
陆冰嫣
Kamila AKA Pretzel girl
rpg 系列 合集
삽목포트 176구
JNETA
乔皮克特
ลุมพินี พาร์ค วิภาวดี-จตุจักรสเตชั่น วันก่อสร้างแล้วเสร็จ
vdd-147
JNETA-017
考研真题数学二
软绵绵合集
rpg 系列
Arcane Part One (2019)
七绪奈奈
ts小薰合集
骚妻子淫语
亿当年
投稿实话
iso 27001 คือ
yorha 9s cosplay
200GANA-3035
tangtang 9s
зимородок сайран никях
西岐战火
STAET-090